

LISA: A Mature Concept

- After first studies in 1980s, M3
 proposal for 4 S/C ESA/NASA
 collaborative
 mission in 1993
- LISA selected as ESA
 Cornerstone in 1995
- 3 S/C NASA/ESA LISA appears in 1997
- Baseline concept unchanged ever since!

Overall Study (2)

- Technical Notes System (198 p.)
 - LISA-ASD-TN-5001 (76 p.)
 - LISA-ASD-TN-5002 (16 p.)
 - LISA-ASD-TN-5003 (26 p.)
 - LISA-ASD-TN-5004 (40 p.)
 - LISA-ASD-TN-5005 (40 p.)

- Other Documents (63 p.)
 - LISA-TNO-TN-3001 (24 p.)
 - LISA-UTN-TN-3002 (17 p.)
 - LISA-UTN-TN-3003 (22 p.)

EADS

All the space you need 17. Sep 2009

Lish tinder

LISA Pathfinder

Testing LISA Technology in Space!

Flight Model Units replace EMs

LISA Status

- Precursor LISA Pathfinder in Phase C/D
 - Launch in 2014

NASA:

- LISA flagship mission in Beyond Einstein Review!
- Recommended in Decadal Survey Astro2010 as one of two large mission to start in this decade!
- In 2011 clear that no money for any large new start this decade, just small contributions

• ESA:

- LISA Cosmic Vision L1 candidate (1 of 3), launch in 2022
- All candidates in descoping exercise for ESA-only or ESAled scenario
- Downselection in 2012!

LISA, IXO and Laplace Redefinition

- Cost-cap for ESA cost at 850 M€ all-in
- Member state contributions around 200 M€ okay
- Start of implementation in 2015
- Launch in 2022
- ESA feasibility study with ESA-TEC and industrial support
- Technical and programmatic review in Nov-Dec 2011
- Scientific review in early 2012 by SSAC
- Recommendation for the June 2012 SPC to:
 - downselect one
 - downselect two
 - or do not select any mission

evolved LISA (eLISA) also called Next Gravitational Observatory (NGO) Project + Industry Study

- Goal
 - Identify mission profiles offering substantial cost reduction with minimum science return impact
- Both Astrium-D and Astrium-UK involved:
 - ASU
 mission design, orbits, transfer, spacecraft, propulsion module
 - ASD → system engineering, payload
- Basic idea:
 - Save cost by re-using LISA Pathfinder and other existing flight hardware
 - Save mass and optimize orbit to use cheap launcher

eLISA-NGO Mission Design

- Armlength 1 Million km, 2 arms
- Identical Mother/Daughter S/C, based on LISA Pathfinder
- 3 spacecraft in a V-configuration, nominal angle 60°, max Doppler <10m/s
- Minimize out-of-plane pointing variation to drop pointahead-actuator on Optical Bench
- Heliocentric slow drift-away orbit, Earth-leading or trailing, starting 10°, 60° inclination wrt ecliptic, range to Earth not exceeding 50 Mkm after 4 years and 65 Mkm after 6 years;
- Launch to sub-GTO, separation from LV, escape and transfer to final orbit by jettisonable propulsion module
- Two Soyuz-FRG launches (or shared Ariane V launch)
- Mission lifetime: baseline 2 years + 2 + 2
- Downlink capability from each S/C, one-axis HGA + LGAs

eLISA-NGO Layout

Slow Drift-Away Orbit: Distance to Earth

Arm Lengths

Payload

- Mission savings can be achieved in the P/L design:
 - Telescope diameter, laser power
 - in-field of view guidance
 - point-ahead angle removal
 - P/L computer removal etc are possible elements
- Current design based on 20cm telescope and 2 W laser
 - Allows substantial reduction of S/C height
 - Optical Bench diameter reduced to 350mm, both OB sides
 - No internal auxiliary metrology
 - To be traded-off with risk/cost/science return in next phase
- Point-ahead angle mechanism removed thanks to very limited out-of-plane angle excursion
- All other P/L elements unchanged from previous design

Launch Vehicle

2 scenarios studied

 Both to sub-GTO, after which S/C proceeds to escape and to station using chemical

propulsion module

– Two Soyuz launches (M + 2 Ds)

A single ArV launch(either dedicated or shared)

Mother & Daughter S/C Configuration

- Attempt to
 - Maximize re-use of LPF units
 - Use same elements for M and Ds
 - Use same structure
- Assume P/L differences between M and Ds:
 - Two articulated optical assemblies vs 1 telescope
 - One extra payload box (IS-FEE)
 - A few larger payload boxes (Laser Subsystem, Diagnostics Package)
- Platform identical for M and Ds

M & Ds S/C configuration

 Optimized accommodation to minimize impact of removal of telescope and FEE between Mother and Daughter

Propulsion Module

- PM inherited 1:1 from LPF
- Shorten central cylinder and tanks to fit in LV
- Minimal impact on qualification status

Daughter configuration

• Two Daughters + PM on Soyuz

Mother S/C for dual Soyuz Launch

Mother on LPF PM inside Soyuz Dual Adapter

(shared launch?)

ESA Member State Involvement

- Traditionally:
 - ESA: spacecraft bus
 - ESA member state agencies: science instrument
- In old ESA/NASA LISA:
 - ESA provided everything for LISA
 - Different from other L1 mission candidates
- Hidden cost reserve:
 - Involve member states for eLISA!

What is the Instrument on eLISA?

- Treat like focal plane instrument for Astronomy mission
- ESA responsible for:
 - Satellite platform, including:
 - Telescope, laser and structure for optical assembly mounting
- Member States fund:
 - Scientific consortium to deliver instrument consisting of:
 - Optical Bench with attached Inertial Sensor and detached Phasemeter, Payload Computer TBD

The eLISA GRS Head and Integration: Identical to LISA Pathfinder

High Power Laser

- → Re-use LISA Pathfinder master and ERDS fiber amplifier
- Tests: Stable low-noise operation up to 2.2 W

Optical Bench

Funding by ESA

• Start: May 2009

• Finish: August 2013

LISA Metrology System

Vol. 1

Technical Proposal

Prepared in response to ESA ITT AO/1-6238/10/NL/HB

Lead Proposer:

National Space Institute – DTU Space, Technical University of Denmark,
Copenhagen, Denmark
Represented by: Allan Hornstrup, Head of Astrophysics

Subcontractors:

Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Hannover, Germany Represented by: Karsten Danzmann, Director

> Axcon ApS, Kgs. Lyngby, Denmark Represented by: Rolf V. Østergaard, CEO

Doc. No. & Issue: LISA/DTUS/SYS/PRO/0001(1)

DATE: 2010-09-28

PREPARED BY: The LISA Metrology System Proposal Team

AUTHORIZED BY: Eigil Friis-Christensen, Director

CLASSIFICATION: Restricted for internal use in ESA and the proposing institutions

- ESA contract under special initiative
- Running since 6 months, now in Phase 2.
- 20-channel prototype
- Professionally engineered
- Hardware space qualifyable

Back to evolved LISA (eLISA) Science

- Cosmology
 - Expansion of universe and Dark Energy equation of state
- Black Holes
 - Evolution, seismology and bothrodesy
- Precision tests of strong gravity
 - No-hair theorem
- Galaxy mergers
 - History and evolution
- Structure of galaxy
 - Complete WD mapping and stellar evolution
- Helioseismology
 - Solar g-modes
- Big Bang
 - Primordial GW radiation

eLISA: 100 Million WD Binaries!

- eLISA will hear every binary system in the Galaxy that has a period < 2 hr
- About 3 000 resolvable in 2 yr
 - <3° location, 10° inclination,</p>
 - distances down to 1 %
- Of the 50 optically known ultra-compact binaries:
 - →8 are guaranteed calibration sources for eLISA-NGO

Trace Galaxy Evolution through Black Hole Mergers

- Hierarchical structure formation: many galaxy mergers
- Most galaxies have BH in center:
 - → Many BH mergers
- Strong eLISA sources

eLISA Black Hole Physics at high SNR

- BBH rest mass $10^4 10^7$
- Out to redshift z ≈ 7
- Redshifted mass to 0.1%-1%
- Absolute spin to 0.01-0.1
- Luminosity distance 1 50 %
- Sky location 3° 10°

Extreme Mass Ratio Inspirals

- SNR 20 up to $z \approx 0.7$ for $10^5 10^6$ M_{\odot}
- Dozens of events
- Mass, spin to 0.1% 0.01 %

Quadrupole moment to < 0.001 M_☉³G²/c⁴

Science Assessment

- eLISA will hear:
 - thousands of galactic binaries
 - tens of extreme mass ratio inspirals (EMRIs)
 - tens to hundreds of SMBH mergers
- But:
 - Parameter estimation accuracy would benefit from 3rd arm
 - Particularly at high redshift (z>10)
 - Needs modest financial contribution from international partner! ;-)
 - → In any case the Science is grand!

Thank you to the eLISA-NGO Science Working Team and all the other friends of LISA who have contributed!

You will see LISA flying!